Excess intersection in equivariant bivariant K-theory

نویسندگان

  • Paul Baum
  • Jonathan Block
چکیده

Using the formalism of bicycles we present an excess intersection formula in Kasparov’s group KKG(X,Y ). Resumé Dans le cadre de bicycles ( cycles bivariants ) nous donnons une formule d’intersection excessive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariant K-theory via Correspondences

We use correspondences to define a purely topological equivariant bivariant K-theory for spaces with a proper groupoid action. Our notion of correspondence differs slightly from that of Connes and Skandalis. We replace smooth K-oriented maps by a class of K-oriented normal maps, which are maps together with a certain factorisation. Our construction does not use any special features of equivaria...

متن کامل

Dualities in equivariant Kasparov theory

We study several duality isomorphisms between equivariant bivariant K-theory groups, generalising Kasparov’s first and second Poincaré duality isomorphisms. We use the first duality to define an equivariant generalisation of Lefschetz invariants of generalised self-maps. The second duality is related to the description of bivariant Kasparov theory for commutative C∗-algebras by families of elli...

متن کامل

Bivariant Chern Character and the Longitudinal Index Theory

In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...

متن کامل

Bivariant Chern Character and Longitudinal Index

In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...

متن کامل

Bivariant K-theory for Smooth Manifolds I Lectures By: Heath Emerson (joint Work with Ralf Meyer) Notes By: Robin Deeley and Elkaioum Moutuou

A. The aim of this talk and the next is to explain two important aspects of equivariant Kasparov theory, especially for smooth manifolds: duality, and the topological description of equivariant KK-groups using equivariant correspondences. In the first talk we will review the basic definitions of KK-theory, including the Thom isomorphism. We then explain duality, which gives a way of redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010